Jump to content

Recommended Posts

Светодиодная рекламная панель, устанавливаемая в оконный проем с изменяемой цветовой гаммой

Реализация рекламной светодиодной панели, которую можно установить в ненужное вам окно, выходящее на фасад здания. Реализация проекта основана на изготовлении корпуса из досок, который затем оббивается тканью. В корпус встраивается контроллер управления RGB светодиодами, блок питания и сами светодиодные RGB ленты в два ряда. Контроллер выполнен в форм-факторе внешней встраиваемой  панели управления, которая монтируется в удобном для вас месте. В качестве лицевого экрана используется лист из матового оргстекла, на который нанесено изображение при помощи наклеек, в данном случае надпись сделана прозрачной пленкой на общем черном фоне.

Световая реклама на окнах - светодиодная подсветка окна своими руками.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_2.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_3.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_4.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_5.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_6.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_7.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_8.jpgСветовая реклама на окнах - светодиодная подсветка окна своими руками_9.jpgподсветка окна×своими руками×светодиодная подсветка×подсветка окон×как сделать подсветку окна×светодиодная лента×реклама в окнах с подсветкой×световая реклама на окнах×световая реклама.jpg

Share this post


Link to post
Share on other sites

Светодиодная подсветка окон. Здание с окнами в качестве пиксельного светодиодного дисплея

светодиодная подсветка окна_1.jpg

Эта инсталляция, результат того, что начиналось как небольшой забавный проект на обычных лампах. В настоящее время, этот проект использует светодиодные модули, которые контролируются в частотном диапазоне 2,4ГГц, превращая фасад здания в полноцветный светодиодный дисплей, отображая пиксельную анимацию под соответствующее музыкальное сопровождение. Этот проект, произведение студентов Вроцлавского технологического Университета в Польше. Сначала, это была группа студентов по интересам, которая делала такие вещи в меньших масштабах в течение многих лет. Но теперь у них есть несколько ключевых спонсоров, которые позволили им не только модернизировать оборудование, но и обеспечили гастроли по университетам Европы!

А вот другая группа студентов, из Массачусетского Технологического Института, превратила фасад здания в дисплей тетриса!

Здание было подобрано на основании подходящих размеров и плотности сетки, образованной окнами на фасаде. К сожалению, группа не предоставляет пока технического описания, но есть прекрасное видео, демонстрирующее их творчество.  Нам же остается только гадать, о том,  как это было реализовано, но есть предположение, что они использовали радиоуправляемые светодиодные модули, установленные на подоконнике каждого окна.  На видео заметно, что есть небольшие мертвые точки, но это не как не сказывается на удовольствии, получаемого от общего эффекта!

светодиоддная подсветка окон_6.gifсветодиодная подсветка окна_3.jpgсветодиодная подсветка окна_4.jpg

 

Share this post


Link to post
Share on other sites

Новогодняя светодиодная подсветка окна 

Приближается Новый год, и вы сильно удивитесь от того, насколько красочным и ярким можно его сделать с микроконтроллером Arduino и светодиодными лентами RGB. 

Новогодняя светодиодная подсветка окна_1.jpg
Для изготовления проекта вам потребуется микроконтроллер Arduino Nano и пять метров светодиодной ленты RGB с соответствующим источником питания. Контроллер Arduino имеет 6 цифровых контактов с широтно-импульсной модуляцией, но для их полного использования, придется разделить светодиодную ленту на две равные полоски по 2,5 метра. 
Также, понадобится дополнительные компоненты, которые будут описаны в поэтапных шагах инструкции ниже. Теперь можно начинать!

Шаг 1: Питание
Новогодняя светодиодная подсветка окна_3.jpg
Прежде чем начать подсоединять микроконтроллер Arduino к светодиодной ленте, надо подготовить источник питания. Светодиодные ленты, как правило,  работают от 12V постоянного тока, а микроконтроллер Arduino работает от 5V. На большинстве контроллеров Arduino имеется контакт Vin, к которому может быть подключен источник питания с более высоким напряжением. Рекомендуется подключать питание с напряжением от 9V,  до 12V максимум, чего по некоторым данным следует избегать.  Учитывая то, что светодиодные ленты обычно подключаются к источникам питания с немного более высоким напряжением, чем 12V (что-то около 12.3V), можно подумать, что лучше избежать подключения контроллера Arduino к этому источнику питания.
Тем не менее, проверив спецификацию стабилизатора напряжения на плате микроконтроллера Arduino Nano (микросхема AMS 1117  5V), можно заметить, что он вполне способен справится с напряжением 12V. Его полная мощность, как правило, не указывается, но достоверно известно, что максимально допустимое напряжение для него составляет 15V. Существуют оригинальные микроконтроллеры Arduino (не клоны), на которых установлена микросхема стабилизатора напряжения MC33269 от производителя ON Semiconductor, которая способна выдержать напряжение до 20V. В любом случае, если есть сомнения, то лучше поискать эту информацию в официальных описаниях производителей микросхем.
Спецификация на стабилизатор напряжения AMS 1117 доступна по ссылке:
http://www.advanced-monolithic.com/pdf/ds1117.pdf 

Таким образом, получается, что можно абсолютно безопасно подключить все компоненты схемы к одному источнику питания 12V: Светодиодные ленты, контроллер Arduino Nano через контакт стабилизатора напряжения Vin (при этом питание на светодиоды берется непосредственно от источника питания). Есть один нюанс, о котором вы должны знать – регуляторы напряжения сильно нагреваются и их радиаторы имеют довольно маленькую площадь охлаждения, поэтому лучше проверить температуру микросхемы через некоторое время работы, чтобы убедится в безопасности использования стабилизатора с повышенным напряжением. 
В другом варианте, можно отдельно подать питание 5V на микроконтроллер Arduino. 
Хорошей идеей будет добавить полевой транзистор в цепь питания 12V, чтобы иметь возможность отключить светодиодную полоску без отключения общего питания (допустим, с инфракрасного пульта дистанционного управления) 

Шаг 2: Полевые транзисторы с  N-каналом
Новогодняя светодиодная подсветка окна_4.jpg
Самым очевидным способом подключения светодиодных полосок к контроллеру Arduino, является использование полевых транзисторов с  N–каналом. По этому поводу есть масса уроков в интернете, например:
http://blog.oscarliang.net/how-to-use-mosfet-beginner-tutorial/ 
Данный тип полевого транзистора идеально подходит для целей этого проекта, так как он отключает ток, ставится после нагрузки,  и является чрезвычайно простым в подключении: Контакт «Исток» сажается на землю, контакт «Затвор» подключается к контакту контроллера Arduino, а контакт «Сток» подключается к своему цветовому каналу светодиодной ленты RGB (как правило, используется цветные провода). Между контактом «Затвор» полевого транзистора и контактом контроллера Arduino рекомендуется устанавливать резистор 220 Ом, но не является строго необходимым условием. Теперь можно управлять светодиодной лентой.
Какой полевой транзистор использовать? В этом проекте используются транзисторы из 220 серии, которые все довольно мощные. Тем не менее, одни транзисторы из этой линейки  изготавливаются для работы с высоким напряжением (1000V и более), а другие предназначены для работы с большой силой тока (200А и выше). Для проекта не требуются ни те, ни другие, и выбираются из расчета, что они смогут работать с минимальным напряжением 20V и током в 6 Ампер.  В конечном итоге, были выбраны универсальные транзисторы с параметрами 55V/41A, которые в дальнейшем могут быть использованы в других проектах.
Этот метод является быстрым и легким, но имеет и обратную сторону медали: требуется 6 полевых транзисторов, чтобы подключить два отрезка светодиодной ленты, которые довольно дорогие и их мощность обычно намного больше, чем требуется (как в этом случае, требуется транзистор с параметрами 20V/6A, а используется 55V/41A).  Эти недостатки слишком очевидны, и поэтому на следующем шаге будет рассмотрен более привлекательный вариант.

Шаг 3: Транзисторный массив Дарлингтона
Новогодняя светодиодная подсветка окна_5.jpg
Отличной альтернативой полевым транзисторам является использование дешевых транзисторных массивов Дарлингтона, например микросхема ULN2003. Проще говоря, это микросхема содержит каскадную связку транзисторов в общем корпусе DIP-корпусе. Каждая пара транзисторов Дарлингтона имеет номинальную мощность 500 мА, но они могут быть подключены параллельно, для увеличения токовой нагрузки.
Транзисторные массивы Дарлингтона, обычно компонуются в двух вариантах: 7-пар и 8-пар. Очевидно, что второй вариант лучше для этого проекта, тем более что у них одинаковая стоимость. Для подключения 2,5 метров светодиодной полосы, надо использовать, по крайней мере, три таких 8-парных массивов, подключая параллельно по 4 пары на каждый из цветных каналов RGB, для достижения номинальной мощности 2 Ампера. Но почему так много, ведь в соответствии со спецификацией на светодиодную ленту, отрезок 2,5 метра должен потреблять 3 Ампера в общей сложности?
Поскольку мощность светодиодных полос RGB складывается из общего потребления, они предназначены для украшения, а не освещения;  они не предназначены, чтобы постоянно излучать яркий белый свет на полную мощность (на самом деле, подразумевается, что светодиодные ленты должны подключаться к контроллеру, который будет ограничивать использование ее мощности). Тем не менее, отдельные цвета, скажем, зеленый, может быть включен на полную мощность. Учитывая, что в проекте используется 60 светодиодов на метр полосы, и каждый светодиод потребляет около 20 мА, легко подсчитать, что при полной мощности на один цвет понадобится 1.2A на метр полосы, или 6А для 5м ленты.
Почему, тогда, только 4 пары, а не 6 (что полностью покроет 3A)? Потому что, по сути, изготовленный драйвер светодиодной полосы, работающий под управлением контроллера Arduino, может ограничить ток, не включая светодиоды на полную яркость на длительное время (короткие всплески – это нормально). Тем не менее, можно использовать все 6 пар, чтобы увеличить надежность и обезопасить электронные компоненты от выгорания.

Шаг 4: Усилитель RGB
Новогодняя светодиодная подсветка окна_6.jpgНовогодняя светодиодная подсветка окна_7.jpgНовогодняя светодиодная подсветка окна_8.jpg
После одного неудачного опыта, в распоряжении оказался нерабочий RGB усилитель, который было решено вскрыть и посмотреть, как он работает.
Посмотрите на картинку выше. На выходе усилителя есть три N-канальных полевых транзистора, прямо как было описано на втором шаге этого руководства. Рядом с ними установлен чип инвертирующий логику, который обеспечивает напряжение на затвор полевого транзистора, когда на его входе ничего нет и наоборот. Усилитель работает довольно просто: он пытается погасить напряжение (без нагрузки) с каждого входного канала. Если оно падает (соответствующий канал заземлен, т.е. подключены светодиоды),  то к инвертирующему чипу ничего не идет, что обеспечивает наличие напряжения на затворе полевого транзистора и открывает выходной канал. Если напряжение не падает, то оно передается на чип инвертора и на затвор полевого транзистора ничего не идет, соответственно его выходной канал закрыт.
Усилитель подключается к питанию 12V, и при этом не имеет никакого стабилизатора напряжения, поэтому надо соблюдать осторожность с питанием и не подключать его напрямую к питанию микроконтроллера.
Для чего была рассказана эта история с разборкой и устройством RGB усилителя? А для того, чтобы вам была понятна светлая сторона его использования. Обратите внимание, что усилитель гасит 12V на своем выходе, если на нем нет нагрузки. Это означает, что практически любой транзистор на другом конце усилителя не будет сталкиваться с высоким током, а только с напряжением 12V. Так что, если подключить RGB усилитель к выходам пар транзисторного массива Дарлингтона, не потребуется параллельного объединения транзисторных пар, то есть один 7-парный массив сможет легко обрабатывать два отрезка светодиодной ленты по 2,5 метра через усилители. Именно это и использовалось в этом проекте. 
Теперь еще интереснее!
Можно подключить RGB усилители к светодиодным драйверам TLC5940, тем самым увеличивая возможное количество светодиодных лент почти до бесконечности! Во всяком случае, проверено, что работают 5 светодиодных лент от одного драйвера.

Шаг 5: Создание вашей собственной платы для запуска 5 светодиодных лент RGB
Новогодняя светодиодная подсветка окна_9.jpgНовогодняя светодиодная подсветка окна_10.jpgНовогодняя светодиодная подсветка окна_11.jpg
Дизайн платы довольно прост: она имеет чип ATmega328, светодиодный драйвер DM633, стабилизатор напряжения ASM 1117 5,0 и 15 полевых транзисторов с N-каналом на 5 выходов для подключения RGB полос.  В отличие от усилителя RGB, эта плата не имеет логических инвертирующих чипов, так как логика инвертируется в программном обеспечении. Затворы полевых транзисторов подключаются к выходам светодиодных драйверов и питанию 5V через резисторы 10 кОм, которые обеспечивают протекание тока, когда выход драйвера не активен  и прекращают его поддерживать, когда открывается выход драйвера.
Все это приводит к одному важному моменту: на плате должен присутствовать один главный мощный полевой транзистор, который будет отключать питание светодиодных полос, когда оно там не нужно. То есть, в то время как контроллер перегружается или просто загружается в момент включения. Если такой транзистор не установлен, то все подключенные светодиодные ленты в этот момент будут загораться на полную мощность (так как драйвер по умолчанию держит выходы в отключенном состоянии, а в этом проекте используется инвертированная логика). Это приведет к чрезвычайно большому энергопотреблению и может вызвать поломку блока питания или чего-то подобного.
Во-вторых, стабилизатор напряжения должен иметь радиатор, который в состоянии охладить его при использовании на максимальной мощности. И вышеупомянутый скачок энергопотребления не имеет к этому никакого отношения, это просто специфика работы стабилизаторов напряжения.

По материалам instructables

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Create New...