• 1
Модное Освещение 💡

Большие светящиеся шары / Как сделать

Question

Как сделать яркую и равномерную засветку больших шаров?

C61327B3-9C1C-434E-ADC4-83BFEDFC2DDF.jpeg.7bc4a46ebb255a4bc8917cd6724a04f6.jpeg


Помогу подобрать ОСВЕЩЕНИЕ по Вашему проекту - 👫 Скидки дизайнерам - 📝 87 000 артикулов (15-стилей) -👆🏼Многое в наличии -🔧Немецкое качество

Share this post


Link to post
Share on other sites

0 answers to this question

There have been no answers to this question yet

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

    • By Ярослав
      Светящаяся LED мебель, предметы интерьера, аксессуары
      Световая мебель привлекает внимание и запоминается, озаряет все вокруг удивительным мягким светодиодным светом! Светящиеся группы, столы, кресла, стулья, диваны станут прекрасным дополнением особого праздничного освещения. Светящаяся светодиодная мебель решает задачи праздничного украшения и светового декора.
      Светящаяся светодиодная мебель очень проста в использовании, обладает высокой степенью надежности, отвечает всем требованиям безопасности; Прочный современный корпус позволяет использовать LED мебель при температуре от -30 до +60°C; Светодиодная мебель является водонепроницаемой, поэтому вы можете использовать в любую погоду, в любых помещениях; Безусловным плюсом можно считать и тот факт, что  светящаяся мебель работает от встроенного аккумулятора или от сети 220V; Отсутствие проводов позволяет расположить световую мебель даже на открытом пространстве; Светодиодная мебель работает без подзарядки до 15 часов; Срок службы более 30 000 часов. Заказывайте качественную led мебель по оптовым ценам! 💵
      Световые кресла » Световые диваны » Световые барные стулья » Световые коктейльные столы » Световые кофейные столы » Световые обеденные столы » Световые барные столы » Световые кубы » Световые шары » Подвесные светящиеся шары » Световой бар » Светильники для подсветки стола » Напольные лампы, светильники » Декоративные уличные светильники » Светильники для бассейнов, фонтанов
      Светодиодная мебель • комплект светящейся группы мебели
      Варианты комплектации: (один стул, один стол, 2 стула и 1 стол, 4 стула и 1 стол)
      Обладает защитой водонепроницаемости IP65, что позволяет использовать в любых помещениях, а также на улице.

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 9 953 - 50 731 РУБЛЕЙ с EMS доставкой 14 - 26 дней
      Светящаяся мебель • комплект светящейся группы мебели "Клевер"
      LED мебель позволяет посетителям окунуться в атмосферу комфорта и отдыха;) Станьте счастливым обладателем волшебной LED мебели, еще и со скидкой💰

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 96 946 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Комплект: 1 стол 95*78*71cm и 4 стула 66*63*83cm)
      КУПИТЬ ЗА 12 386 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Один ⭕ стол D80*H72 cm)
      КУПИТЬ ЗА 14 345 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Один ⭕ стол 80*80*74 cm)
      КУПИТЬ ЗА 10 606 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Один 💺 стул L59 * W63 * H79)
      КУПИТЬ ЗА 23 485 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Один 💺 стул 61*61*81cm)
      КУПИТЬ ЗА 10 605 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Один 💺 стул L59 * W63 * H79)
      Светящаяся светодиодная мебель • LED диван с подсветкой
      Состоит из двух видов секций: средняя и угловая. Обладает защитой водонепроницаемости IP65, что позволяет использовать в любых помещениях, а также на улице.

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 22 879 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Стоимость одной секции)
      КУПИТЬ ЗА 131 452 РУБЛЕЙ с EMS доставкой 14 - 26 дней (Комплект: диван + стол)
      Светящаяся светодиодная мебель • стул "Яблоко"
      Выполнен из ударопрочного пластика, 16 оттенков LED подсветки, возможность работы от аккумулятора или от сети 220V. Обладает защитой водонепроницаемости IP65, что позволяет использовать в любых помещениях, а также на улице.
      Лучшее, что можно сделать по окончании рабочего дня - расслабиться в замечательных светящихся LED креслах! Светящиеся пуфики и кресла придадут шарма любой обстановке;) Продли праздничное настроение и сделай серые будни более яркими и цветными!

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 5 760 РУБЛЕЙ с EMS доставкой 14 - 26 дней
      КУПИТЬ ЗА 5 425 РУБЛЕЙ с EMS доставкой 14 - 26 дней
      КУПИТЬ ЗА 5 759 РУБЛЕЙ с EMS доставкой 14 - 26 дней
      Светящаяся светодиодная мебель • стул "Цилиндр"
      ✔️ Светящаяся мебель - это уникальный помощник в создании праздничной и романтической атмосферы. Она поможет создать запоминающийся интерьер или обстановку, внесет ярких красок и незабываемых воспоминаний. Фотографии с данной мебелью привлекут внимание в Instagram.
      🔥 Вы можете сами организовать себе Chillout

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 4 245 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D40*H40 CM)
      КУПИТЬ ЗА 4 244 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D40*H40 CM)
      КУПИТЬ ЗА 8 265 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D40*H40 CM, 2 шт. / партия, 4 132,50 руб. / шт. )
      КУПИТЬ ЗА 8 265 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D40*H40 CM, 2 шт. / партия, 4 132,50 руб. / шт. )
      Светящаяся светодиодная мебель • светодиодный журнальный столик
      Светодиодная мебель располагает к наилучшему времяпрепровождению!

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 15 709 РУБЛЕЙ с бесплатной EMS доставкой 14 - 26 дней (D60 * H19 см)
      КУПИТЬ ЗА 6 265 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D60 * H19 см)
      КУПИТЬ ЗА 5 290 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D60 * H20 см)
      КУПИТЬ ЗА 5 808 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D66 * H22 см)
      КУПИТЬ ЗА 7 514 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D80 * H22 см)
      КУПИТЬ ЗА 9 096 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D92 * H22 см)
      Светящаяся светодиодная мебель • барный стол "LED Bubble"
      Светодиодная мебель, это потрясающее решение для оформления и украшения интерьеров домов, магазинов, гостиниц, кафе, баров, ресторанов, игровых залов и т.д. 

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 8 767 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D60 * H110 см)
      КУПИТЬ ЗА 18 725 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D60(Top)*D47(Bottom)*H110cm)
      КУПИТЬ ЗА 10 439 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D58 * H110 см)
      Светящаяся светодиодная мебель • светодиодный стол
      Светодиодный стол отлично дополнит интерьер вашего ресторана!

      🎥 ВидеоОбзор:
      КУПИТЬ ЗА 9 325 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D88*H19)
      КУПИТЬ ЗА 16 215 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D88*H46)
      КУПИТЬ ЗА 18 155 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D88*H56)
      КУПИТЬ ЗА 20 039 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D88*H76)
      КУПИТЬ ЗА 21 918 РУБЛЕЙ с EMS доставкой 14 - 26 дней (D88*H100)
      КУПИТЬ ЗА 29 747 - 32 255 РУБЛЕЙ с EMS доставкой 14 - 26 дней (L80xW50xH56cm, L80xW50xH76cm, L80xW50xH96cm)
      Светящаяся светодиодная мебель • комплекты, группы, диваны, стулья, кресла, столы
      Полный ассортимент:
       
       
    • By Андрей Костин
      Маленький, утонченный инструмент для наружного архитектурного освещения: прожекторы ERCO Kona XS
      С прожекторами Kona XS, компания ERCO представляет новые инструменты для системы архитектурного освещения, а именно линейку компактных светильников с низким энергопотреблением. Серия прожекторов Kona XS обладает компактными размерами, высококачественным светом, прочным корпусом и они изготовлены по новейшим технологиям, отвечающим профессиональным стандартам архитекторов, дизайнеров освещения и ландшафта, а также градостроителей.

      Есть много ситуаций в частных или общественных проектах наружного освещения, где малые и точные инструменты освещения предпочтительнее мощных прожекторов - особенно при использовании в городских районах, в парках или для объектов вокруг зданий. Компания ERCO разработала новый ряд прожекторов Kona XS специально для этой цели - самый маленький наружный прожектор в линейке ERCO был сокращен до необходимого размера, предлагая эффективный и надежный инструмент для легкого планирования и реализации решений для наружного освещения.

      Уменьшение до минимума
      Серия светильников Kona XS имеет дизайн своих более крупных собратьев, которые обладают современным коническим корпусом из высококачественного литого алюминия, но с более компактным и отличным видом. Система с двойной порошковой окраской обеспечивает долговечность и изысканный внешний вид, а также простое техническое обслуживание. Благодаря классу защиты IP65, корпус светильника отлично выдерживает воздействие воды и пыли, что делает его подходящим для множества задач освещения под открытым небом. Крепкое шарнирное крепление с внутренней проводкой позволяет зафиксировать светильник в любом положении для надежной фиксации направления луча, вращающаяся монтажная пластина позволяет выполнить точное выравнивание.
      Точные и эффективные концепции освещения
      Все светильники в линейке Kona XS отличаются высокоэффективными светодиодными линзами «Spherolit», предлагающими превосходное качество освещения и широкий спектр опций распределения света. В линейке присутствуют прожекторы от узкого пятна до полной заливки светом, прожекторы с широтно-симметричным распределением света, а также объективы с асимметричным распределением света для высокоточного выравнивания вертикальных поверхностей. Все концепции системы светильников ERCO, доступны с теплыми белыми (3000K) и нейтральными белыми светодиодами (4000K), в то же время различные виды углов рассеивания света расширяют возможности творческих решений еще дальше. В результате, серия светильников Kona XS обеспечивает точные и эффективные концепции освещения в открытом пространстве, не нарушая магию ночи.
      Источник: lednews.lighting
    • By SMD
      Светодиодная звезда на елку с питанием от двух батареек АА

      В далеком прошлом, эта рождественская звезда изготавливалась на основе декодера управляющей логики, транзисторов и светодиодов. Теперь, спустя многие годы, этот проект вновь был реализован, используя современные технологии, включая микроконтроллер, преобразователь напряжения DC/DC и светодиодный драйвер постоянного тока.
      Для своего питания, проект использует две батарейки типа АА, поэтому необходимо использовать конвертер напряжения DC/DC, так как синие светодиоды имеют  прямое падение напряжения  чуть более 3V, а чип светодиодного драйвера около 0,6V. Две новые батарейки АА выдают напряжение чуть больше 3V, а перезаряжаемые аккумуляторные батареи,  даже при полной зарядке не могут дать достаточного потенциала.  Для ликвидации этой проблемы, используется преобразователь напряжения, который преобразует номинальные 3V от батареек в необходимые для работы 3,71V.
      Микроконтроллер может работать от напряжения преобразователя DC / DC или непосредственно от батареек. Также, микроконтроллер может отключать преобразователь DC/DC во время спящего режима для экономии заряда аккумуляторов, в этом режиме преобразователь потребляет около 1 мкА. Сам микроконтроллер PIC16LF1703 надежно работает до 1,8V и является очень экономичным в потреблении электроэнергии, особенно в спящем режиме.
      Светодиодный драйвер принимает SPI команды от микроконтроллера и на их основании включает определенные светодиоды. Программное обеспечение микроконтроллера использует стандартную машинную архитектуру, для вывода анимации.
      Этот небольшой рождественский проект содержит 16 светодиодов двух разных цветов свечения, установленных на печатной плате в виде звезды. Светодиоды управляются индивидуально от микроконтроллера, который запрограммирован на несколько режимов работы, чтобы создать хорошие визуальные эффекты. Поскольку потребление электроэнергии не велико, звезда может непрерывно работать в течении как минимум одного дня.

      Выбор использования обычных светодиодов, обусловлен их небольшим размером по сравнению с SMD светодиодами. Светодиодный драйвер обеспечивает постоянный ток светодиодов 5мА.
      Микроконтроллер выполняет 3 основные функции:
      Посылает команды SPI на драйвер для включения и отключения светодиодов. Контролирует напряжение батареек или аккумуляторов, если напряжение падает ниже допустимого, то он переводит преобразователь DC/DC в спящий режим. Обрабатывает сигналы от внешней кнопки. При помощи внешней кнопки подключенной к микроконтроллеру, можно изменять режимы работы светодиодов, менять скорость отображения, а также переводить звезду в спящий режим.
      На рисунке ниже представлена полная электрическая схема звезды:

      На рисунке ниже представлена архитектурная схема работы программного обеспечения, и схема его динамического поведения:

      Конструкция системы и принцип управления светодиодами

      Светодиодный драйвер управляется 16-битными SPI пакетами, в одном таком пакете, каждый бит соответствует одному светодиоду.  Когда определенный бит,  равен единице, то соответствующий светодиод включается, когда он равен нулю, то светодиод выключается.
      bit
      15
      14
      13
      12
      11
      10
      9
      8
      7
      6
      5
      4
      3
      2
      1
      0
      LED
      15
      14
      13
      12
      11
      10
      9
      8
      7
      6
      5
      4
      3
      2
      1
      0
      Чтобы создать последовательность, пакеты битов посылаются на светодиодный драйвер с заданной периодичностью.  Базовый период равняется 62мс. Он может меняться в пределах от 81мс до 81*255мс.  
      Например, программа, которая имеет круговые переключения светодиодов во времени,  выглядит следующим образом:

      При создании проекта были использованы следующие электронные компоненты:
      Светодиодный драйвер TLC5925IDWR Микроконтроллер PIC16LF1703-I/SL Конвертер DC/DC  MCP1640T-I/CHY Отсек для батареек Конденсатор 22 мкФ Конденсатор 27 пкФ Конденсатор 4.7 мкФ Кнопка,  монтируемая на PCB плату Диодная сборка MBR0530T1G Резистор 300 кОм Резистор 620 кОм Резистор 4.3 кОм Светодиоды 8 мм, синие и красные Светодиоды 10 мм, желтые и красные По материалу hackaday
    • By light77
      Светильник-лампа шар, имитирующая восход солнца на базе контроллера Wemos
      Это светодиодный светильник шар на базе контроллера Wemos, который может имитировать восход солнца. При этом, с помощью смартфона, можно установить будильник и продолжительность восхода, то есть, лампа будет имитировать восход солнца, начиная со времени срабатывания будильника. 

      Что касается создания самого проекта, то он должен был решать три задачи:
      Он должен был быть полезным: многие проекты, которые мы можем найти в интернете, являются наукоемкими, и в основном, они классные и веселые. Но они могут потерять долгосрочную полезность или большое внимание аудитории. Хотелось создать что-то для себя, что семья будет использовать каждый день. Он должен был выглядеть круто: не хотелось делать то, что выглядит неровным, уродливым, что никто не хотел бы иметь в своем собственном доме. Это должно было быть что-то как можно ближе к реальному продукту. Он должен был быть веселым: это действительно была высокая цель, изобрести то, что понравится людям, с чем они могли отдыхать и играть, при соблюдении вышеприведенных критериев.
        Для создания проекта использовались следующие компоненты:
      •    Светодиодная лента на базе светодиодов WS2813 RGB – 1 метр
      https://ru.aliexpress.com/wholesale?minPrice=&maxPrice=&isBigSale=n&isFreeShip=y&isFavorite=n&isMobileExclusive=n&isLocalReturn=n&shipFromCountry=&shipCompanies=&SearchText=WS2813&CatId=202004316&g=y&SortType=total_tranpro_desc&initiative_id=SB_20170503230652&needQuery=n&tc=af
      Использовалась не влагозащищенная версия, которая содержит 60 светодиодов на метр. Но, можно также использовать и светодиодную ленту на базе WS2812 и WS2812b, свет будет точно таким же, к тому же они дешевле. Просто светодиодная лента WS2813 более надежна, так как содержит дублирующие линии соединения для линии передачи данных, так что, если вы сломаете один светодиод, остальная часть ленты продолжит нормально работать.
      •    Лампа Ikea Fado
      •    Микроконтроллер с поддержкой Wi-Fi, в этом проекте использовался WEMOS D1 mini V2.2.0 WIFI (ESP8266)
      •    Блок питания 5V, 3А
      Обратите внимание, что вам нужно будет уменьшить максимальную яркость, или использовать блок питания, обеспечивающий как минимум 4А.
      •    Провода
      Шаг 1: Изменение проводки внутри лампы

      На этом этапе вам надо подготовить силовую часть проводки для питания светодиодной ленты и микроконтроллера. Для этого вам нужно подключить блок питания через соответствующий разъем «папа – мама», вывести провода питания для светодиодной ленты и микроконтроллера. Возможно, потребуется немного пайки.
      Шаг 2: Еще немного проводки и пайки

      Контроллер mini Wemos D1 поставляется без паяных штыревых контактов, поэтому вам нужно либо самостоятельно припаять их, либо поступить как в этом примере. В отверстия контактов, просто была вставлена колодка со штыревыми контактами, а с другой стороны платы одеты разъемы с проводами. Но в этом случае, надо убедиться, что получился хороший контакт между контактами.
      Подключите соответствующее питание (+5V и GND) к микроконтроллеру. Сделайте то же самое для светодиодной ленты. Затем подключите зеленый провод линии передачи данных от светодиодной ленты к выходу «D2» на микроконтроллере Wemos.
      В конце, установите конденсатор емкостью 1000 мкФ на разъем питания (между плюсом и минусом) для сглаживания токовой нагрузки при пиковых значениях. 
      Шаг 3. Установка светодиодной ленты

      Это самая «трудная» часть. После закрепления контроллера Wemos сбоку от патрона лампочки вам нужно свернуть светодиодную ленту так, чтобы она оставалась в свернутом виде и равномерно распределяла свет. Для этого можно использовать липкую ленту, которая не оставляет следов, например, малярный скотч.
      Сначала был сделан первый виток и приклеен к основанию лампы Fado. Потом можно продолжить скручивать ленту, постепенно поднимаясь вверх. В самом верху, в патрон лампы,  был установлен  длинный винт, который поддерживает верхние витки светодиодной ленты. 
      Затем, проверьте, все ли соединения верны и вставьте всю эту конструкцию в стеклянный плафон.
      Шаг 4: Программирование контроллера Wemos
      На этом шаге, надо загрузить программный код в ваш контроллер Wemos с помощью программного обеспечения Arduino IDE. Для этого надо подключить микроконтроллер к компьютеру через USB порт, запустить программу Arduino IDE, выбрать соответствующую плату Wemos и загрузить в него программный код.
      Перед загрузкой программного кода в микроконтроллер, в нем надо будет изменить две строчки, которые отвечают за идентификацию в сети Wi-Fi:
      const char* ssid     = "YOUR_WIFI_HERE";
      const char* password = "YOUR_PASS_HERE";
      Затем, после подключения питания к микроконтроллеру, вы сможете управлять лампой через любой браузер на вашем компьютере или смартфоне с Wi-Fi. Для подключения к лампе, в строке браузера надо набрать IP адрес контроллера и команду. Например, строка следующего вида:
      http://192.168.0.IP_OF_YOUR_LAMP/?c=17&b=9&m=0&s=1484181161&v=5
      включит свет с фиксированным цветом (цвет # 17). К счастью, вам не придется посылать такие длинные команды, так как они все реализованы в мобильном приложении, о котором рассказывается в видео в начале инструкции. 
      Программный код и ссылка на мобильное приложение будут предоставлены немного позже.
      Источник: instructables
    • By Ярослав
      Интерактивный светодиодный шар (купол) Geodesic
      Интерактивный купол Geodesic состоит из 120 треугольников со светодиодом и сенсором в каждом из них. Каждый светодиод может быть адресован индивидуально, а каждый датчик настроен специально для своего треугольника. Управление куполом выполняется с помощью микроконтроллера Arduino, который зажигает светодиоды и выдает определенный MIDI-сигнал, в зависимости от того, на какой треугольник зритель положит руку.

      Купол проектировался в качестве забавного дисплея, который привлекает людей к свету, электронике и звукам. Поскольку купол хорошо делится на пять одинаковых частей, было создано пять отдельных MIDI-выходов, каждый из которых может воспроизводить разный звук. Это делает купол гигантским музыкальным инструментом, идеальным для одновременного воспроизведения музыки с участием нескольких человек. Помимо воспроизведения музыки, купол запрограммирован на отображение световых эффектов. Окончательная структура имеет размер чуть больше метра в диаметре и 70 см в высоту, и в основном выполнена из дерева, акрила и деталей напечатанных на 3D-принтере.
      Шаг 1: Необходимые материалы

      Для этого проекта вам потребуются следующие материалы:
      Древесина для распорок и основания купола (количество зависит от типа и размера купола); Адресуемая светодиодная лента (Color LED Pixel Strip 160led WS2801 DC 5V) – 5 метров; Микроконтроллер Arduino Uno (на базе процессора Atmega328); Протоплата (с двухсторонней печатной платой PCB Universal (7 x 9 см)); Акриловый лист для рассеивания света светодиодов (прозрачный,  размером 300 х 300 x 3 мм); Блок питания 220V АС / 12V DC 15A 180Вт. (без вентилятора охлаждения); Преобразователь напряжения для Arduino (LM2596 DC-DC Buck Converter 1.23V-30V); Преобразователь напряжения для датчиков и светодиодов (12A CC CV Module); Модуль обнаружения препятствий с ИК-датчиками для Arduino (Infrared Obstacle Avoidance Sensor Module) – 120 шт; Модуль с 16-канальным мультиплексором (CD74HC4067) – 5 шт; Модуль с 8-канальным мультиплексором (Multiplexer Breakout - 8 Channel (74HC4051)) – 6 шт; Микросхема двухканального мультиплексора (MAX4544CPA +) – 5 шт; Соединительные провода; Штыревые контакты (однорядная колодка на 40 контактов длиной 2,54 мм); MIDI-разъем (MIDI разъем совместимый с материнскими платами (5-контактный DIN)) – 5 шт; Резистор 220 Ом для MIDI разъемов – 10 шт; Металлические разделители (стойки) для крепления электроники к куполу (Stand-off Spacer Hex M3 Male x M3 Female); Резьбовые адаптеры (дерево – металл) для установки металлических разделителей; Эпоксидный клей; Изолента; Припой. Шаг 2: Проектирование геодезического купола

      В интернете существует несколько онлайн ресурсов для создания собственного геодезического купола. Эти сайты предоставляют калькуляторы для расчета куполов, которые рассчитывают длину каждой стороны (то есть стойки) и количество соединителей, необходимых для любого типа купола, который вы хотите построить. Сложность геодезического купола (т.е. плотность треугольников) определяется его классом (1V, 2V, 3V и т. д.), причем более высокая сложность становится лучшим приближением к идеальной сферической форме. Чтобы построить свой собственный купол, сначала вам надо выбрать диаметр купола и его класс.
      Для расчета этого купола использовался сервис под названием Domerama (www.domerama.com). С его помощью был рассчитан купол сложностью 4V, усеченный до 5/12 сферы с радиусом 40 см. По результатам расчета, для этого типа купола предусмотрено шесть различных стоек:
      •    30 X "A" - 8,9 см
      •    30 X "B" - 10,4 см
      •    50 X "C" - 12,4 см
      •    40 X "D" - 12,5 см
      •    20 X "E" - 13,0 см
      •    20 X "F" - 13,2 см   
      В общей сложности это 190 стоек, длина которых составляет 2 223 см. Для их изготовления использовались сосновые рейки размером  10 x 30 мм. Для установки стоек были спроектированы и напечатаны на 3D-принтере пластиковые соединители. В зависимости от количества установочных мест в соединителе, для купола 4V 5/12 потребовалось следующее количество соединителей:
      •    4 местный соединитель – 20 шт;
      •    5 местный соединитель – 6 шт;
      •    6 местный соединитель – 45 шт.
      3D-модели соединителей для программы Autocad в STL-файлах доступны по ссылкам ниже:
      4joint_v1.stl 5joint_v6.stl 6joint_v2.stl
      Шаг 3. Построение купола со стойками и соединителями

      Используя вычисления от сервиса Domerama для купола 4V 5/12, с помощью циркулярной пилы были отрезаны все 190 стоек, затем помечены и помещены в коробку. С помощью 3D-принтера Makerbot были напечатаны все пластиковые соединители (73 штуки). Теперь пришло время собрать купол!
      Для того чтобы собрать купол, начинать надо сверху и постепенно радиально двигаться вниз. После того, как все стойки были соединены, каждая стойка была снята по отдельности и вставлена обратно, но с добавлением эпоксидного клея между стойкой и соединителем. Соединители были разработаны таким образом, чтобы имелась некоторая гибкость конструкции, поэтому после каждого снятия и установки стойки приходилось проверять симметрию купола.
          
      Шаг 4: Лазерная резка и установка базовых деревянных пластин

      Теперь, когда скелет купола построен, пришло время разрезать треугольные опорные плиты. Эти базовые деревянные пластины прикрепляются к нижней части стоек и используются для установки светодиодов на куполе. 
      Сначала были вырезаны опорные плиты из фанеры толщиной 5 мм, в форме пяти различных треугольников, которые находятся на куполе: AAB (30 треугольников), BCC (25 треугольников), DDE (20 треугольников), CDF (40 треугольников) и EEE (5 треугольников).
      Размеры каждой стороны и форма треугольников были определены с помощью калькулятора куполов (Domerama) и имеющейся геометрии. После отрезания тестовых опорных плит с помощью лобзика, был создан дизайн треугольников с помощью программы Coral Draw. Все остальные опорные плиты были вырезаны с помощью станка лазерной резки (намного быстрее!). Если у вас нет доступа к лазерному резаку, вы можете нанести контуры опорных плит на фанеру с помощью линейки и транспортира и вырезать все их с помощью лобзика. После того, как опорные плиты были вырезаны, купол был перевернут, а пластины приклеены к куполу клеем по дереву.
      Шаг 5: Обзор электроники

      На рисунке выше показана схема электроники для купола. Микроконтроллер Arduino Uno используется для записи и чтения сигналов для купола. Чтобы осветить купол, используются “пиксельные” светодиоды RGB, так что в каждом из 120 треугольников расположен один светодиод. Каждый светодиод можно адресовать отдельно, используя микроконтроллер Arduino, который создает последовательные данные и тактовый сигнал для полосы (см. Выводы A0 и A1 в схеме).
      Чтобы взаимодействовать с куполом (т.е. сделать его интерактивным), был установлен ИК-датчик над каждым светодиодом. Эти датчики используются для обнаружения препятствий, в данном случае, они обнаруживают, когда чья-то рука находится близко к треугольнику на куполе. Поскольку каждый треугольник на куполе имеет свой собственный ИК-датчик, а в нем 120 треугольников, пришлось сделать мультиплексирование сигналов перед микроконтроллером Arduino. Было решено использовать пять 24-канальных мультиплексоров (MUX) для 120 датчиков на куполе. Для пяти 24-канальных MUX требуется пять управляющих сигналов. Для них были выбраны контакты 8 - 12 на микроконтроллере Arduino. Выходные данные модулей MUX считываются с помощью контактов 3 - 7.
      Также, в схему были включены пять MIDI-выходов, чтобы воспроизводить звук. Другими словами, пять человек могут играть на куполе одновременно, каждый с одним выходом, воспроизводящим другой звук. На микроконтроллере Arduino имеется только один вывод TX, поэтому для пяти MIDI-сигналов требуется демультиплексирование. Поскольку выходной MIDI-сигнал создается в другое время, чем считывание сигналов с ИК – датчиков, были использованы те же управляющие сигналы.
      После того, как все входные сигналы ИК – датчиков считываются в микроконтроллер Arduino, купол начинает светиться и воспроизводить звуки, однако все зависит от программирования контроллера.
      Шаг 6: Монтаж светодиодов на куполе

      Поскольку купол настолько велик, пришлось разрезать светодиодную полосу, чтобы поместить один светодиод в каждый треугольник. Каждый светодиод приклеивается к треугольнику с помощью суперклея. С каждой стороны светодиода было просверлено отверстие через опорную плиту для прокладки проводов внутри купола. 
      Затем были припаяны соединительные провода к каждому контакту на выходе первого светодиода (5V, GND, CLK, DATA) и концы пропущены в просверленное отверстие. Длина проводов должна быть достаточно длинной, чтобы достать до соседнего светодиода. Затем провода протягиваются к следующему светодиоду, припаиваются к его входу, и процесс повторяется по цепочке. Светодиоды были соединены в конфигурации, которая минимизировала количество требуемого провода, но сохраняла смысл, в плане адресации светодиодов. В качестве альтернативы можно использовать отдельные RGB светодиоды со сдвиговыми регистрами.
      Шаг 7: Проектирование и внедрение датчиков

      Для купола было решено использовать модули для обнаружения препятствий.  Эти модули имеют ИК-светодиод и приемник. Когда объект попадает в поле обнаружения модуля, ИК-излучение от ИК-светодиода  отражается в сторону приемника, который его детектирует и меняет логический уровень на выходе модуля. Порог срабатывания датчика устанавливается потенциометром на плате так, чтобы выход был высоким только тогда, когда рука находится непосредственно около этого треугольника.
      Каждый треугольник состоит из фанерного светодиодного основания, листа диффузного акрила, установленного на 2,5 см выше светодиодной пластины, и инфракрасного датчика. Датчик для каждого треугольника был установлен на лист тонкой фанеры в форме пятиугольника или шестиугольника в зависимости от положения на куполе (см. рисунок выше). Для этого, в базе инфракрасных датчиков были просверлены отверстия, чтобы их можно было прикрутить саморезом. После чего были подсоединены провода (5V и GND).
      Затем шестиугольные или пятиугольные крепления ИК-датчиков были приклеены к куполу эпоксидной смолой, прямо над 3D-печатными соединителями так, чтобы провод мог проходить через купол.
      Шаг 8: Мультиплексирование выходов ИК-датчиков

      Поскольку микроконтроллер Arduino Uno имеет только 14 цифровых входов / выходов и 6 контактов аналоговых входов, а нам требуется считать сигналы со 120 сенсоров, требуется использование мультиплексоров для считывания всех сигналов. 
      Было решено построить схему на пяти составных 24-канальных мультиплексорах, каждый из которых считывает сигнал с 24 ИК-датчиков. В свою очередь, каждый такой 24-канальный мультиплексор (MUX) состоит из плат 8-канального, 16-канального и 2-канального MUX.
      Для 24-канального MUX требуется пять управляющих сигналов, которые было решено подключить к контактам 8 - 12 на микроконтроллере Arduino. Все пять 24-канальных MUX получают одинаковые управляющие сигналы от Arduino, поэтому провода от выводов Arduino были подключены ко всем 24-канальнмым MUX одинаково. Цифровые выходы ИК-датчиков подключены к входным контактам 24-канальных MUX, чтобы их можно было последовательно считать в микроконтроллер Arduino. Поскольку для считывания всех 120 датчиков используется пять отдельных контактов, купол разбит на пять отдельных секций, состоящих из 24 треугольников (смотрите цвета купола на рисунке).
      Шаг 9: Рассеивание света с помощью акрила

      Чтобы рассеять свет от светодиодов, прозрачный лист акрила был отшлифован круговой орбитальной шлифовальной машиной с двух сторон. Во время шлифования, как бы рисовалась цифра «8», это оказалось наиболее практичным способом.
      После шлифования и очистки акрила, был использован лазерный резак, чтобы вырезать треугольники, но так, чтобы они поместились внутрь треугольников на куполе над светодиодами. Можно разрезать акрил с помощью акрилового режущего инструмента или даже лобзика, если он не будет трескаться. Для того чтобы акриловые треугольники не проваливались, внутрь треугольников на куполе были вклеены плоские деревянные полоски толщиной 5 мм. 
      После этого, акриловые треугольники были вклеены в купол с помощью эпоксидного клея.
      Шаг 10: Создание музыки с помощью MIDI

      Для того чтобы купол мог воспроизводить звуки, вам надо установить и подключить MIDI-разъемы для каждой из пяти секций купола, так как показано не схеме.
      Поскольку на Arduino Uno имеется только один последовательный порт передачи данных (контакт 2 обозначен как вывод TX), нужно демультиплексировать сигналы, посылаемые, на пять MIDI-разъемов. Для этого использовались те же управляющие сигналы, что и для мультиплексоров (контакты 8 – 12), так как MIDI сигналы передаются позже, чем идет считывание сигналов с ИК-датчиков. Эти управляющие сигналы отправляются на 8-канальный демультиплексор, чтобы выбрать MIDI-разъем, на который будут выводиться звуковые данные.
      Шаг 11: Питание купола

      В куполе присутствует несколько потребителей. Поэтому вам необходимо рассчитать ток, потребляемый каждым компонентом, чтобы определить мощность источника питания, который вам потребуется.
      •    Светодиодная полоса: Было использовано примерно 3,75 метра светодиодной полосы WS2801, которая потребляет 6,4 Вт / метр. Это соответствует 24 Вт (3,75 * 6,4). Чтобы преобразовать это в ток, используется формула P = I * V, где V - напряжение светодиодной полосы, в данном случае 5V, а P – это мощность. Поэтому ток, потребляемый светодиодами, составляет 4,8 А (24 Вт / 5 В = 4,8 А).
      •    ИК-датчики: каждый ИК-датчик потребляет около 25 мА, всего 3А для 120 датчиков.
      •    Микроконтроллер Arduino: 100 мА, 9В.
      •    Мультиплексоры: имеется пять 24-канальных мультиплексоров, каждый из которых состоит из 16 и 8-канального мультиплексора. Каждый 8-канальный и 16-канальный MUX потребляют около 100 мА. Таким образом, общая потребляемая мощность всех MUX равна 1A.
      При суммировании всех этих компонентов общее энергопотребление составит около 9А. Светодиодная полоса, инфракрасные датчики и мультиплексоры имеют входное напряжение 5В, а микроконтроллер Arduino - 9В. Поэтому был выбран блок питания 12V 15A, конвертер для преобразования 12V в 5V и конвертер для преобразования 12V в 9V для Arduino.
      Шаг 12: Круговое основание купола

      Купол имеет круглое основание из толстой фанеры, которое имеет вырез в середине в виде пятиугольника для доступа к электронике. Для создания основания использовался лист фанеры размером 122 х 182 см. Вырезание выполнялось на фрезерном станке с ЧПУ, но можно вырезать и обычным электрическим лобзиком. После того, как основание было вырезано, оно было прикреплено к куполу с помощью небольших деревянных кубиков (50 х 70 мм) и саморезов. Затем внутрь купола был установлен блок питания (приклеен на эпоксидную смолу), печатные платы с мультиплексорами (установлены на металлические разделители) и микроконтроллер.
      Шаг 13: Пятиугольное основание купола

      В дополнение к круглой базе, также было сделано основание для купола в виде пятиугольника со смотровым окошком внизу. Это основание и смотровое окно, также были сделаны из фанеры, на фрезерном станке с ЧПУ. Стороны пятиугольника выполнены из деревянных досок, но с одной стороны были добавлены отверстия для разъемов. Используя металлические кронштейны и стыковые соединения 2 x 3 см, деревянные доски были прикреплены к основанию пятиугольника. Выключатель питания, MIDI-разъемы и USB-разъем прикреплены к передней панели. Все основание пятиугольника привинчивается к круглой основе, описанной на этапе 12. В нижней части купола было установлено окно, чтобы любой желающий мог посмотреть внутрь купола, чтобы увидеть электронику. Смотровое стекло изготовлено из акрилового материала с помощью лазерной резки и приклеено эпоксидной смолой к круглому куску фанеры.
      Шаг 14: Программирование купола
      Есть бесконечные возможности для программирования купола. Каждый цикл кода принимает сигналы от ИК-датчиков, которые указывают на треугольники, которые были затронуты кем-то. С помощью этой информации вы можете окрасить купол любым цветом RGB и / или выдать MIDI-сигнал. Вот пару примеров программ, которые были написаны для купола:
      •    Цветной купол: каждый треугольник циклически проходит по четырем цветам по мере его касания. Когда цвета меняются, воспроизводится арпеджио. С помощью этой программы вы можете раскрасить купол тысячами различных способов.
      •    Музыкальный купол: купол окрашен в пять цветов, каждая секция соответствует своему MIDI-выходу. В программе вы можете выбрать, какие ноты будут воспроизводиться в каждом треугольнике.
      и другие программы: Simon.ino, Pong.ino
      Шаг 15. Фотографии завершенного купола

      Примечание: В оригинальной инструкции вы дополнительно найдете примеры программных кодов и выдержки из них для программирования отдельных компонентов. А также ссылки на различные ресурсы, которые были использованы при разработке и создании этого проекта.
      Оригинал: instructable
    • By ColorPlay
      Световое светодиодное шоу (светодиодные пои)
      Светодиодные пиксельные пои для рисования светом

      Невероятный спектакль огней из совершенно безопасных материалов, можно представить благодаря светодиодным пиксельным огням. Следует отметить, что на первый взгляд простое изделие на самом деле выполнить достаточно сложно. Потому, прежде чем начать, ознакомьтесь с полным списком работ и необходимых материалов, взвесьте свои силы и возможности, а уже после приступайте к творческому процессу. В руках великолепных исполнительниц led шоу, очень легко вращаются обычные наборы цветных огней. Проблема заключается в сложности пайки и необходимости соблюдать максимальную точность в размерах. Эти прирученные фейерверки не боятся ни солнца ни дождя.
      Хотя схема не является сложной, она должна вмещаться в очень небольшое пространство, потому, будут нужны острые инструменты хорошо заточенные и очищенные, проволоки, различный клей и в наибольшей мере - терпение и настойчивость. Вот схема, согласно которой следует проводить работу по соединению деталей. Схема состоит из двух 16-пиксельных DotStar полос, микроконтроллеров, LiPoly батареи и одной кнопки включения. Зарядка и программирование производятся через порт USB. То есть, после окончания успешной работы, вы сможете создавать различные рисунки одним предметом.

      Пошаговое описание процесса можно найти в источнике: https://learn.adafruit.com/genesis-poi-dotstar-led-persistence-of-vision-poi/overview
      Пиксельные пои своими руками

      Создайте свои собственные программируемые светодиодные пои, при вращении которых вы озарите ночную тьму и получите замечательные фотографии на вашем фотоаппарате. Идея основывается на съемке с увеличенным временем экспозиции и программном коде Adafruit Genesis Poi. Эти двойные светодиодные жезлы переводят эту идею на новый уровень, за счет использования инфракрасного пульта дистанционного управления, который позволяет менять изображение, не останавливая вращения жезлов, а также за счет увеличенного количества светодиодов - изображения получаются более яркие и четкие. А аккумулятор емкостью 2200мА/ч позволяет светодиодам светиться ярче самой яркой звезды на небе!

      Для одного светодиодного маркера, вам понадобится следующее:
      Контроллер Pro Trinket 5V Плата зарядного устройства LiPoly Переключатель включения / выключения Светодиодная лента  DotStar  144шт / 1м  Инфракрасный датчик Круглая литий-ионная аккумуляторная батарея 2200мА/ч Пульт дистанционного управления «Mini Remote Control» Провода, деревянные бруски, и прочие сопутствующие материалы Прозрачная труба из поликарбоната диаметром 1” с торцевыми наконечниками Внимание, используйте прозрачные трубы только из поликарбоната, акриловые трубы будут ломаться. Внутренний диаметр ваших труб должен быть не меньше 7/8”.
      Программный код для контроллера Arduino Pro Trinket
      Программное обеспечение для контроллера Pro Trinket устанавливается при помощи программы Arduino IDE версии 1.6.4.
      Сама программа Arduino IDE доступна по ссылке:
      http://www.arduino.cc/en/Main/Software 
      Руководство по установке программы Arduino IDE доступно по ссылке:
      https://learn.adafruit.com/adafruit-arduino-ide-setup/arduino-1-dot-6-x-ide
      Обзор по программированию контроллера Pro Trinket доступно по ссылке:
      https://learn.adafruit.com/introducing-pro-trinket/overview
      Библиотеки для этого проекта можно скачать по ссылке:
      https://github.com/adafruit/Kinetic_POV/archive/master.zip
      Этот проект также требует установки библиотеки для светодиодов Adafruit DotStar:
      https://github.com/adafruit/Adafruit_DotStar/archive/master.zip
      В этом руководстве мы не будем подробно вдаваться в подробности программирования контроллера. Более подробную информацию по этому вопросу вы сможете найти в оригинальной инструкции и дополнительных источниках по контроллерам Arduino.
      Схема соединений
        Это схематическое изображение компонентов, что бы ясно показать вам все соединения, а не их фактическое размещение. Последнее будет подробно показано далее.   Контроллер Pro Trinket, плата зарядного устройства и ИК-датчик располагаются на одном конце жезла, а выключатель на другом.   Батарея располагается посередине жезла, так как это самая тяжелая часть. Размещение её на одном конце создаст большой дисбаланс при вращении, и вам будет тяжело с ним управляться.      Макет и расположение
      Заранее распланируйте расположение всех элементов в трубке. Это вам сильно поможет при окончательной сборке.   Переключатель включения / выключения находится на одном конце маркера, батарея находится посередине (для баланса) и контроллер Pro Trinket с платой зарядного устройства находятся на противоположном конце от переключателя.   Отметьте центр на вашей поликарбонатовой трубке. Совместите центр батареи с вашей отметкой.   Сдвиньте относительно друг друга ваши деревянные бруски, так чтобы в сдвинутом состоянии они заполнили всю длину трубки. Оставьте достаточно места на обоих концах для установки компонентов. Полезно при этом делать пометки на концах, т.е. для каких элементов предназначается каждый конец.     Вставьте ваш предварительный макет в трубку и убедитесь, что вы все правильно размерили, т.е. с одного конца вы хорошо достаете до выключателя, а с другой стороны вам удобно подключать кабель к USB порту контроллера.     Подключение светодиодов
      Я использую провод 26 AWG для подключения питания, провод с силиконовым покрытием  30 AWG для линий передачи данных. Эти провода очень гибкие, термостойкие, легки в использовании, и их очень трудно разорвать. Это делает проводку в этом проекте намного легче, чем использование традиционных проводов.   Я выбрал для себя следующую цветовую маркировку:  Питание +5V – красный Земля GND – черный Линия синхронизации данных – желтый Линия данных – зеленый
        Возьмите вашу светодиодную полосу длиной 1 метр, содержащую 144 светодиода. При помощи ножа аккуратно удалите силиконовую защиту на входе и выходе светодиодной полосы. На входе полосы аккуратно отрежьте только провода питания (красный и черный), т.е. у вас останется только два провода данных (желтый и зеленый). Открытые контакты заизолируйте при помощи горячего клея. На выходе полосы сделайте наоборот, обрежьте два провода линии данных и оставьте только провода питания. Направление входа и выхода, на полосе указывается стрелками.     Со стороны входа полосы отсчитайте 36 светодиодов (пикселей). При помощи маникюрных ножниц сделайте разрез между пикселями, так как показано на рисунке ниже. Оставьте две боковые площадки (питание) на выходе одной полосы и две внутренние (данные) на входе другой. Повторите эту операцию для остальных трех полос. На последней, 4 полосе, на выходе этого можно не делать, т.к. у нас там уже припаяны провода для питания светодиодов. Если ваша светодиодная лента имеет паяные соединения между светодиодами, то такой причудливый разрез можно не делать, просто распаяйте требуемые участки ленты.     Отрежьте 3 комплекта желтого и зеленого провода длиной 2-3 дюйма. Припаяйте их к входным контактам линии синхронизации (желтый) и линии данных (зеленый) на каждой отрезанном куске полосы. На четвертом куске эти провода уже есть.   Отрежьте 3 комплекта черного и красного провода длиной 2-3 дюйма. Припаяйте их к выходным контактам, (+) – красный и (-) – черный на каждый отрезанный кусок. На четвертом куске они также остались.   Затем рекомендуется проверить работу светодиодов и ваших соединений. Подключите ваши светодиодные ленты при помощи зажимов «крокодилов», к любому подходящему контроллеру с установленными библиотеками «DotStars standtest». После проверки закрепите все ваши паяные соединения при помощи горячего клея.     Положите светодиодные ленты вдоль деревянных брусков, убедившись, что они лежат на равном расстоянии от аккумулятора. Помните, что ваши бруски имеют разную длину.  Сделайте запас от края, 1-2 дюйма, что бы отходящие провода в дальнейшем не закрывали светодиоды.   Используйте тонкий слой клея (горячий клей прекрасно подходит), чтобы закрепить светодиодные полоски на брусках.   
      Нанесите на оба конца вашего аккумулятора горячий клей, и, вставив его между двумя вашими брусками, склейте ваши бруски и аккумулятор в одну длинную палку – будущий жезл. Обратите внимание на правильность расположения светодиодов. Затем также при помощи клея приклейте на один конец ваш выключатель, заранее припаяв к нему провода. Длина проводов должна быть значительной, так чтобы доставала до другого конца маркера.
        Со стороны выключателя, попарно соедините линию данных и линию синхронизации от двух полос светодиодов (одного конца), и соответственно расцветке добавьте к скруткам по одному длинному проводу. Затем пропаяйте скрутки паяльником. Длины дополнительных проводов должно с запасом хватать до другого конца маркера.     Проведите аналогичные действия с проводами для питания светодиодов, только дополнительные провода у вас будут намного короче. Обратите внимание, что общая точка встречи этих проводов от двух концов немного смещена относительно центра аккумулятора в сторону с выключателем. Их пока никуда подключать не надо, это будет сделано позже. Только пока скрутите два провода вместе от двух скрученных пар.     Протяните провода данных от конца с выключателем к другому концу по торцевой свободной стороне бруска. Соедините светодиодные полосы аналогично и дополнительно припаяйте по одному дополнительному проводу соответствующей расцветки. Они будут подключены к контроллеру Pro Trinket.
        На этом наш основной светодиодный узел собран, отставьте его пока в сторону.     Подключение контроллера Pro Trinket и платы зарядного устройства   Переверните ваше зарядное устройство LiPoly и посмотрите на заднюю сторону. Там вы увидите две серебристые площадки (Jumper), которые нужно спаять вместе (на фото они уже спаяны). Этим вы намного ускорите скорость заряда аккумуляторной батареи.     Возьмите один провод от выключателя и припаяйте его к входному контакту на лицевой стороне платы зарядного устройства LiPoly.     Припаяйте короткий кусочек желтого провода к контакту +5V и короткий кусочек черного провода к контакту “G”.     Установите плату зарядного устройства LiPoly на плату контроллера Pro Trinket. Убедитесь, что она не блокирует выводы №1 и №13, а также в отсутствии короткого замыкания между платами. Затем при помощи клея надежно скрепите их.     Подключите желтый провод с контакта «+5V» на плате зарядного устройства на контакт «BUS» на плате контроллера Pro Trinket.   Подключите черный провод с контакта «G» на плате зарядного устройства на отрицательный контакт «VBAT» на плате контроллера Pro Trinket     Скрутите вместе длинный (2 фута) и короткий (3 дюйма) отрезки красного провода, и припаяйте к контакту «5V» на плате Pro Trinket.
      Скрутите вместе длинный (2 фута) и короткий (3 дюйма) отрезки черного провода, и припаяйте к контакту «G» на плате Pro Trinket.
      Длинные провода пойдут на светодиоды и выключатель питания, короткие на ИК - датчик.
      Припаяйте 3-ий короткий (3 дюйма) зеленый кусочек провода к контакту №3 на плате Pro Trinket. К этим трем коротким проводам позже припаяем ИК - датчик.

      Возьмите длинный черный провод, и запустите его до середины жезла по свободному торцу. Найдите скрученную пару черных проводов от светодиодов, и соедините их вместе.
      С красным чуть-чуть сложнее. Принцип тот же, но вы должны встроить еще один провод, идущий от выключателя. Запустите длинный красный провод вниз к батарее, найдите свободный провод, идущий от выключателя, и скрутите их вместе. Затем эту пару скрутите вместе с красной парой, идущей от светодиодов. Для изоляции можно использовать термоусадочную трубку.   
      Припаяйте  зеленый провод (линия данных) к контакту №11, а желтый (синхронизация) к контакту №13 на контроллере Pro Trinket.
        Подключение инфракрасного датчика   Зачистите короткие провода, ранее припаянные на контроллер Pro Trinket на 1/2 дюйма (да, так много!). Наденьте на них термоусадочную трубку. Оберните провода вокруг соответствующих выводов ИК – датчика и надежно их припаяйте. Надвиньте термоусадочную трубку на оголенные контакты датчика и нагрейте ее до полной усадки.   Если смотреть на датчик выпуклостью к вам, то зеленый к левой ноге (контакт 3), черный посередине (земля) и красный к правой ноге (+5V). Если конечно ранее, вы правильно припаяли провода. Проверьте, этот датчик очень легко сгорает!    Затем аккуратно приклейте датчик на брусок. Обратите внимание, на то, как он расположен, не закрывает ли его боковая крышка.

      Подключение аккумулятора
      Подключение аккумулятора очень простое дело. Зачистите провода от аккумулятора и по одному подключите к общей цепи. Не подсоединяйте оба провода одновременно, это мера предосторожности на тот случай, если в цепи есть короткое замыкание. Затем включите питание при помощи кнопки включения и попробуйте пультом произвести какие-нибудь изменения, для проверки общей работоспособности.

      После того, как вы удостоверились в том, что все работает, аккуратно закрепите все провода с торцевой стороны бруска. Обратите внимание, чтобы они не закрывали светодиоды.
      Закончите изготовление вашего жезла, засунув всю конструкцию в поликарбонатовую трубку. Засовывать лучше всего начинать со стороны контроллера Pro Trinket.

      Использование дистанционного пульта

      Примечание: Кнопка STOP/MODE выключает все светодиоды, но это не отключает контроллер Pro Trinket полностью, и аккумулятор все равно будет разряжаться. Для полного выключения всегда используйте выключатель питания на конце маркера.
      Для зарядки аккумулятора, просто подключите кабель USB к контроллеру Pro Trinket.

      Загрузка изображений
      LED маркер может отображать 16-ти цветные изображений в формате GIF размером 36 пикселей по высоте и максимум до 255 пикселей по ширине, также возможно отображение Bitmap изображений.
      Загрузка изображений происходит из командной строки, но для этого требуются установленные библиотеки Imaging Library Python (PIL). Этой проблемы лишены контроллеры Raspberry Pi в которых они уже встроены, но они требуют для работы ОС Linux.
      Более подробно о загрузке и настройке изображений, вы можете узнать из оригинальной инструкции по ссылке:
      https://learn.adafruit.com/pov-dotstar-double-staff?view=all
  • New Message

  • Popular Now

  • Member Statistics

    1,015
    Total Members
    206
    Most Online
    Alex_led
    Newest Member
    Alex_led
    Joined
  • Popular Contributors

  • Who's Online   0 Members, 0 Anonymous, 12 Guests (See full list)

    There are no registered users currently online